An ANN-Based Smart Tomographic Reconstructor in a Dynamic Environment

نویسندگان

  • Francisco Javier de Cos Juez
  • Fernando Sánchez Lasheras
  • Nieves Roqueñí Gutiérrez
  • James Osborn
چکیده

In astronomy, the light emitted by an object travels through the vacuum of space and then the turbulent atmosphere before arriving at a ground based telescope. By passing through the atmosphere a series of turbulent layers modify the light's wave-front in such a way that Adaptive Optics reconstruction techniques are needed to improve the image quality. A novel reconstruction technique based in Artificial Neural Networks (ANN) is proposed. The network is designed to use the local tilts of the wave-front measured by a Shack Hartmann Wave-front Sensor (SHWFS) as inputs and estimate the turbulence in terms of Zernike coefficients. The ANN used is a Multi-Layer Perceptron (MLP) trained with simulated data with one turbulent layer changing in altitude. The reconstructor was tested using three different atmospheric profiles and compared with two existing reconstruction techniques: Least Squares type Matrix Vector Multiplication (LS) and Learn and Apply (L + A).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Demand Management in an Airconditioner System by Frequency Control in Smart Grid Environment

As there is a rapid growth both in the number of power consumers and also the limitations energy resources, it is clearly accepted that the old version of power grid must change into smart grid from head to toe. One of the most important advantages of smart grid which makes it much more exclusive rather than other typical systems is the two-way connectivity between the utility and the costumers...

متن کامل

Forecasting Ozone Density in Tehran Air Using a Smart Data-Driven Approach

Introduction: As a metropolitan area in Iran, Tehran is exposed to damage from air pollution due to its large population and pollutants from various sources. Accordingly, research on damage induced by air pollution in this city seems necessary. The main purpose of this study was to forecast ozone in the city of Tehran. Considering the hazards of ozone (O3) gas on human health and the environmen...

متن کامل

Analysing the Performance of a Tomographic Reconstructor with Different Neural Networks Frameworks

Correction of atmospheric turbulences with the use of guide stars as reference, is one of the most relevant issues of adaptive optics (AO). This is addressed with tomographic techniques such as Multi-object adaptive optics (MOAO). Next generations of extremely large telescopes, will require improvements in computational capabilities of real time control systems. An improved version of CARMEN, a...

متن کامل

Multi time-step wavefront reconstruction for tomographic adaptive-optics systems.

In tomographic adaptive-optics (AO) systems, errors due to tomographic wavefront reconstruction limit the performance and angular size of the scientific field of view (FoV), where AO correction is effective. We propose a multi time-step tomographic wavefront reconstruction method to reduce the tomographic error by using measurements from both the current and previous time steps simultaneously. ...

متن کامل

Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems

Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named "CARMEN" are presented. B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012